2017
|
| Göbbert, Jens Henrik Flow predictions for your nose Artikel In: Exascale-Newsletter, Bd. 3, S. 3, 2017. @article{Göbbert2017exa,
title = {Flow predictions for your nose},
author = {Göbbert, Jens Henrik},
editor = {Forschungszentrum Jülich GmbH},
url = {http://exascale-news.de/en/2017/index/#!/Flow-Predictions-for-Your-Nose, Flow predictions for your nose (Englische Version online)
http://rhinodiagnost.eu/wp-content/uploads/2017/11/exascale_nl_03_2017.pdf, Strömungsvorhersage für die Nase (Deutsche Version)
},
year = {2017},
date = {2017-11-09},
urldate = {2017-11-09},
journal = {Exascale-Newsletter},
volume = {3},
pages = {3},
institution = {Forschungszentrum Jülich GmbH},
keywords = {Computational Fluid Dynamics, High performance computing, Höchstleistungsrechner, Medizin, Nasal respiration, Strömungssimulation},
pubstate = {published},
tppubtype = {article}
}
|
| Göbbert, Jens Henrik; Schlößer, Tobias; Zeiss, Erhard Strömungsvorhersage für die Nase Online Forschungszentrum Jülich, Unternehmenskommunikation (Hrsg.): Forschungszentrum Jülich 2017, besucht am: 25.10.2017. @online{jsc-rhino,
title = {Strömungsvorhersage für die Nase},
author = {Göbbert, Jens Henrik and Schlößer, Tobias and Zeiss, Erhard },
editor = {Forschungszentrum Jülich, Unternehmenskommunikation},
url = {http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2017/2017-10-25-rhinodiagnost.html?nn=448936, Strömungsvorhersage für die Nase (Pressemitteilung)},
year = {2017},
date = {2017-10-25},
urldate = {2017-10-25},
issuetitle = {Superrechner sollen bei behinderter Nasenatmung helfen},
organization = {Forschungszentrum Jülich},
abstract = {Herbstzeit ist Erkältungszeit. In den meisten Fällen ist die verstopfte Nase nach ein paar Tagen wieder frei. Doch nicht immer sind die Beschwerden so schnell wieder verschwunden. Bei etwa 11 Prozent der Bevölkerung ist die Behinderung der Nasenatmung chronisch. Im Projekt Rhinodiagnost arbeiten Experten des Jülich Supercomputing Centre und der RWTH Aachen gemeinsam mit Fachkräften aus der Industrie daran, Ärzte bei der – oft schwierigen – Entscheidung für oder gegen eine Operation zu unterstützen. Ziel ist der Aufbau eines Service-Netzwerks, das individuelle 3D-Modelle und Strömungssimulationen auf Supercomputern als zusätzliche Entscheidungshilfe zur Verfügung stellen soll.},
keywords = {Höchstleistungsrechner, Strömungssimulation},
pubstate = {published},
tppubtype = {online}
}
Herbstzeit ist Erkältungszeit. In den meisten Fällen ist die verstopfte Nase nach ein paar Tagen wieder frei. Doch nicht immer sind die Beschwerden so schnell wieder verschwunden. Bei etwa 11 Prozent der Bevölkerung ist die Behinderung der Nasenatmung chronisch. Im Projekt Rhinodiagnost arbeiten Experten des Jülich Supercomputing Centre und der RWTH Aachen gemeinsam mit Fachkräften aus der Industrie daran, Ärzte bei der – oft schwierigen – Entscheidung für oder gegen eine Operation zu unterstützen. Ziel ist der Aufbau eines Service-Netzwerks, das individuelle 3D-Modelle und Strömungssimulationen auf Supercomputern als zusätzliche Entscheidungshilfe zur Verfügung stellen soll. |
| Göbbert, Jens Henrik; Habbinga, Sonja; Lintermann, Andreas Comprehensive Visualization of Large-Scale Simulation Data Linked to Respiratory Flow Computations on HPC Systems Online Jülich, Forschungszentrum (Hrsg.): Forschungszentrum Jülich 2017, besucht am: 24.10.2017. @online{jscaia-flow,
title = {Comprehensive Visualization of Large-Scale Simulation Data Linked to Respiratory Flow Computations on HPC Systems},
author = {Göbbert, Jens Henrik and Habbinga, Sonja and Lintermann, Andreas },
editor = {Forschungszentrum Jülich},
url = {https://www.youtube.com/watch?v=FmPvHIZSjyk, Link to Video},
year = {2017},
date = {2017-10-24},
urldate = {2017-10-24},
organization = {Forschungszentrum Jülich},
abstract = {Conditioning large-scale simulation data for comprehensive visualizations to enhance intuitive understanding of complex physical phenomena is a challenging task. This is corroborated by the fact that the massive amount of data produced by such simulations exceeds the human horizon of perception. It is therefore essential to distill the key features of such data to derive at new knowledge on an abstract level.
Furthermore, presenting scientific data to a wide public audience, especially if the scientific content is of high societal interest, i.e., as it is the case for fine dust pollution, is not only difficult from a visualization but also from an information transfer point of view. Impressive visual and contextual presentation are hence key to an effective knowledge transfer of complicated scientific data and the involved methods to arrive at such data. This is presented for highly-dense simulation data stemming from HPC simulations of inspiratory flows in the human respiratory tract. The simulations are performed on JUQUEEN using a coupled lattice-Boltzmann/Lagrange method and aim at understanding the microscopic interactions of flow and particle dynamics in highly intricate anatomically correct geometries. As such, they deliver insights on the impact of particulate matter on the human body.},
howpublished = {You-Tube Channel Forschungszentrum Jülich},
keywords = {Large-Scale Simulation Data, Respiratory Flow Computation, Visualization},
pubstate = {published},
tppubtype = {online}
}
Conditioning large-scale simulation data for comprehensive visualizations to enhance intuitive understanding of complex physical phenomena is a challenging task. This is corroborated by the fact that the massive amount of data produced by such simulations exceeds the human horizon of perception. It is therefore essential to distill the key features of such data to derive at new knowledge on an abstract level.
Furthermore, presenting scientific data to a wide public audience, especially if the scientific content is of high societal interest, i.e., as it is the case for fine dust pollution, is not only difficult from a visualization but also from an information transfer point of view. Impressive visual and contextual presentation are hence key to an effective knowledge transfer of complicated scientific data and the involved methods to arrive at such data. This is presented for highly-dense simulation data stemming from HPC simulations of inspiratory flows in the human respiratory tract. The simulations are performed on JUQUEEN using a coupled lattice-Boltzmann/Lagrange method and aim at understanding the microscopic interactions of flow and particle dynamics in highly intricate anatomically correct geometries. As such, they deliver insights on the impact of particulate matter on the human body. |
| Lintermann, Andreas Strömende Bits und Bytes - Zusammenspiel von Höchstleistungsrechnern und Medizin Artikel In: RWTH Themenheft, 2017. @article{Lintermann2017,
title = {Strömende Bits und Bytes - Zusammenspiel von Höchstleistungsrechnern und Medizin},
author = {Lintermann, Andreas},
editor = {RWTH Aachen University},
url = {http://rhinodiagnost.eu/wp-content/uploads/2017/10/RWTH_Themenheft_Lintermann-1.pdf, Strömende Bits und Bytes - Zusammenspiel von Höchstleistungsrechnern und Medizin},
year = {2017},
date = {2017-09-01},
journal = {RWTH Themenheft},
address = {RWTH Aachen University, Aachen, Germany},
school = {RWTH Aachen University},
abstract = {Respiration is an essential physiological functionality of the human organism and is responsible for supplying the body with oxygen. The nasal cavity takes care of olfaction and degustation, filters fine dust from the air as well as moisturizes and tempers the air. Therefore, it is indispensable in respiration, and a degradation of only one or a few functionalities leads to discomfort or further pathologies. In the profile area Computational Science {&} Engineering (CompSE), human respiration is analyzed by means of highly-resolved numerical simulations that, due to the large problem sizes, can only be executed on supercomputers. Complaints in nasal respiration, the development of chronic airway diseases, a reduction of olfaction and degustation, particle deposition behavior and filtering mechanisms of the nasal cavity, air conditioning capability, and a fundamental understanding of the physics of human respiration are at the core of the research. The following article gives an overview of the methodologies employed by the group, current results, and the challenges engineers, computer scientists, and medical specialists have to face in the future to reach the goal of personalized medical treatment.},
keywords = {Höchstleistungsrechner, Medizin, Strömungssimulation},
pubstate = {published},
tppubtype = {article}
}
Respiration is an essential physiological functionality of the human organism and is responsible for supplying the body with oxygen. The nasal cavity takes care of olfaction and degustation, filters fine dust from the air as well as moisturizes and tempers the air. Therefore, it is indispensable in respiration, and a degradation of only one or a few functionalities leads to discomfort or further pathologies. In the profile area Computational Science {&} Engineering (CompSE), human respiration is analyzed by means of highly-resolved numerical simulations that, due to the large problem sizes, can only be executed on supercomputers. Complaints in nasal respiration, the development of chronic airway diseases, a reduction of olfaction and degustation, particle deposition behavior and filtering mechanisms of the nasal cavity, air conditioning capability, and a fundamental understanding of the physics of human respiration are at the core of the research. The following article gives an overview of the methodologies employed by the group, current results, and the challenges engineers, computer scientists, and medical specialists have to face in the future to reach the goal of personalized medical treatment. |
| Lintermann, Andreas; Göbbert, Jens Henrik; Vogt, Klaus; Koch, Walter; Hetzel, Alexander Rhinodiagnost - Morphological and functional precision diagnostics of nasal cavities Artikel In: InSiDE, Innovatives Supercomputing in Deutschland, Bd. 15, Nr. 2, S. 106-109, 2017. @article{RhinoAll,
title = {Rhinodiagnost - Morphological and functional precision diagnostics of nasal cavities},
author = {Lintermann, Andreas and Göbbert, Jens Henrik and Vogt, Klaus and Koch, Walter and Hetzel, Alexander},
editor = {Gauss Center for Supercomputing (GCS), High-Perfomance Computing Center Stuttart (HLRS)},
url = {http://rhinodiagnost.eu/wp-content/uploads/2017/11/InSiDE-Innovatives-Supercomputing-in-Deutschland-2017-Rhinodiagnost-Morphological-and-functional-precision-diagnostics-of-nasal-c.pdf, Rhinodiagnost - Morphological and functional precision diagnostics of nasal cavities},
year = {2017},
date = {2017-08-31},
journal = {InSiDE, Innovatives Supercomputing in Deutschland},
volume = {15},
number = {2},
pages = {106-109},
keywords = {Computational Fluid Dynamics, Diagnostics, In-situ computational steering, Nasal respiration, Rhinology, Rhinomanometry},
pubstate = {published},
tppubtype = {article}
}
|