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Advantages of using numerical methods in rhinology:

« Three-dimensional surface geometries enable to capture the
complexity of the nasal cavity

* Fluid mechanical properties determine the quality of the nasal
cavity

— The respiratory resistance is related to the total pressure loss

— The heating capability is related to the temperature distribution

» Physicians can use numerical methods to review their
decision or to even find the best possible treatment

» Surgeons can conduct virtual surgery for planning and
validating a surgical intervention
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Geometry acquisition:

CT-dataset * Realistic 3D geometries are obtained
from CT-datasets in two steps 1

Segmentation

Surface
geometry
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Geometry acquisition:

Fig 1: CT-image (coronal plane)
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Geometry acquisition:

» Realistic 3D geometries are obtained
from CT-datasets in two steps 1
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Geometry acquisition:

Fig 2: Segmented data set (coronal plane)
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Geometry acquisition:

» Realistic 3D geometries are obtained
from CT-datasets in two steps 1
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Geometry acquisition:

Lower turbinate

Nostrils

Fig 3: Water-tight 3D surface geometry 5
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Geometry acquisition:

» Realistic 3D geometries are obtained
from CT-datasets in two steps 1
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Grid generation:

An unstructured, hierarchical
Cartesian grid is generated
using a massively parallel
grid generator 5

Fig 4: Octree structure [2]

Vid 1: Massively parallel grid generator,
Copyright A. Lintermann, AlA



Numerical Methods I‘“A RWHM‘II\IIE\%%I

Grid generation:

Vid 1: Massively parallel grid generator, Copyright A. Lintermann, AlA
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| attice-Boltzmann method:

21

 Solves the discrete BGK formulation
of the Boltzmann equation

« f.(r,t) is the Particle Probability
Distribution Function (PPDF) %

11

Fig 5: D3Q27 Model
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evel-Set Method:

The surface geometry of an arbitrary
body is represented by a discrete
signed Level-Set function

The minimum wall distance is
calculated for each cell

Movement functions are used to
simulate bodies in motion 7

— Translational, rotatory, and oscillating
motion is possible

- Temporal interpolation between an initial
and a final Level-Set

Fluid

Solid
s T — | Ps .

Fig 6: Level-Set representation
of an arbitrary body
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Coupled Lattice-Boltzmann-Level-Set Approach:
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Fig 9: Cp coefficient for a sphere at Re=100

Fig 11: Moving sphere at Re=100
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Coupled Lattice-Boltzmann-Level-Set Approach:
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Geometry modification:

The software 3D Slicer is employed
to modify the segmented data-set
of a given nasal cavity

— o
The area between the septum ?3 e
and the lower turbinate was . gﬂi_J g
modified to demonstrate the AL _
virtual surgery -

— Simulation of a swelling

—  One of the most relevant area from
a fluid mechanical point of view

- Great impact on the respiratory
resistance

Fig 10: Nasal cavity used for virtual surgery

11
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Geometry modification:
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Fig 11: Screenshot of 3D Slicer
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Geometry modification:

2
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Geometry modification:
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Geometry modification:
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Geometry modification:
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General settings:

Three simulations are conducted in total

-~ A simulations of the pre- and the postoperative geometry are performed (LBM)

— A ssimulation of the virtual surgery is performed (LBM-LS)

. The highly resolved meshes contain about 100 - 10° cells

— The resulting grid spacing is about 6x =~ 0.1mm (sufficient as shown in [10])

. Each simulation is advanced for 300,000 time steps

-~ The results of the simulations are furthermore averaged for 300,000 time steps

. The calculations were performed on the JURECA Supercomputer
in Julich and on the CLAIX Supercomputer of RWTH Aachen

- In total 2048 processes were employed per simulation (about 10h-15h)

14
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Boundary Conditions:

Nostrils: - Equation of St. Venant and Wantzel 1
- Ambient Temperature ( T;,, = 20 °C )

Y
-1 3 v—1
P = (1 — yz_yp%_l (pt—lvt—l)z)

Pharynx: - Volume flux is prescribed by setting the
corresponding Reynolds number (V = 250 m?l )
- lterative procedure for pressure calculation p1o

Inner walls: - Interpolated Bounce-Back-Scheme e
- Temperature is set to body temperature [10]
(TBody =36°C)
15
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Comparison of pre- and postoperative simulation results:

. For all simulations similar setups have been used

-~ The Reynolds number Re = 808 is based on the pharynx geometry, the
volume flux in the pharynx, and the kinematic viscosity of air

. The fluid mechanical properties analyzed are:
- The static pressure loss between nostrils and pharynx Aps; = ps, — Psp
- The total pressure loss between nostrils and pharynx Ap; = prn, — Prp
- The temperature difference between nostrils and pharynx AT = T, — T,

- The velocity and temperature distributions

17
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Comparison of pre- and postoperative simulation results:

Preoperative | Postoperative :
i : Comparison
nasal cavity | nasal cavity

_ Right cavity 32.62 Pa 22.76 Pa -43.32%
Static

pressure loss _
Left cavity 28.55 Pa 27.95 Pa -2.15%

Tab 1: Comparison of the pre- and postoperative nasal cavity

18
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Comparison of pre- and postoperative simulation results:

Preoperative | Postoperative :
i : Comparison
nasal cavity | nasal cavity

otal Bothcavies  30.86Pa  2584Pa  -19.43%
pressure loss

Tab 1: Comparison of the pre- and postoperative nasal cavity
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Comparison of pre- and postoperative simulation results:

Preoperative | Postoperative :
i : Comparison
nasal cavity | nasal cavity

Temperature

: Both cavities 15.5°C 14.9°C -4.02%
difference
Absolute ooy 35.5°C 34.9°C :
temperature

Tab 1: Comparison of the pre- and postoperative nasal cavity

18
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Comparison of pre- and postoperative simulation results:

Preoperative | Postoperative :
i : Comparison
nasal cavity | nasal cavity

_ Right cavity 32.62 Pa 22.76 Pa
Static
pressure loss _
Left cavity 28.55 Pa 27.95 Pa
Total ”
Both cavities 30.86 Pa 25.84 Pa
pressure loss
Temperature g, covities  15.5°C 14.9°C
difference
Al Pharynx 35.5°C 34.9°C
temperature

Tab 1: Comparison of the pre- and postoperative nasal cavity

-43.32%

-2.15%

-19.43%

-4.02%
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Velocity distribution:

Fig 12: Velocity distribution in the slices of the pre- and postoperative simulation
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Temperature distribution:

Fig 13: Temperature distribution in the slices of the pre- and postoperative simulation
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Virtual surgery, temporal changes of the LS-field:

én-¢'n
- L )

Fig 14: LS-field at four different time steps t; - t,4

ty)- l
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Pressure and temperature evolution during virtual surgery:

Total pressure loss Ap; [Pa]

71.46 20.52
Apy, virtual surgery AT, virtual surgery
Apy, preoperative (averaged) --------- AT, preoperative (averaged) ---------
62.52 Apy, postoperative (averaged) —-—-- AT, postoperative (averaged) —-—--
Begin of virtual surgery -—--— 19.06 - Begin of virtual surgery -—--—
End of virtual surgery ----- End of virtual surgery -----
53.59 _ I
< !
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Fig 15: Comparison of the total pressure for the Fig 16: Comparison of the temperature for the
simulations of the pre- and postoperative simulations of the pre- and postoperative
nasal cavity, and the virtual surgery nasal cavity, and the virtual surgery
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Conclusions:

A Lattice-Boltzmann solver is employed to simulate the
respiratory flow in realistic geometries of the nasal cavity

Parts of the nasal cavity to be removed by a surgery can be
represented by a Level-Set function

The Coupled Lattice-Boltzmann-Level-Set Approach can be
used to:

— Conduct virtual surgeries

—- Simulate swelling/detumescence in the nasal cavity

24
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Further development:

Optimization of the in-situ environment
— In-situ visualization, Geometry modification

- Performance optimization

Implementation of a structure solver (Finite Cell Method)

Future applications:

Fluid-structure-interaction inside the nasal cavity

Simulation of moving surfaces
- Nose collapse

—-  Obstructive sleep apnea

Simulation of particles inside the nasal cavity

25
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