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Advantages of using numerical methods in rhinology: 

 

• Three-dimensional surface geometries enable to capture the 

complexity of the nasal cavity 

• Fluid mechanical properties determine the quality of the nasal 

cavity 

 The respiratory resistance is related to the total pressure loss 

 The heating capability is related to the temperature distribution 
 

 Physicians can use numerical methods to review their 

decision or to even find the best possible treatment 

 Surgeons can conduct virtual surgery for planning and 

validating a surgical intervention 
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Geometry acquisition: 
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• Realistic 3D geometries are obtained 
from CT-datasets in two steps [4] 
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Fig 1: CT-image (coronal plane) 
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Geometry acquisition: 

 

 

 

Fig 2: Segmented data set (coronal plane) 
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Geometry acquisition: 

 

 

 

Fig 3: Water-tight 3D surface geometry 
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Grid generation: 
 

• An unstructured, hierarchical  
Cartesian grid is generated  
using a massively parallel  
grid generator [5] 

 

 

 

Vid 1: Massively parallel grid generator,  

           Copyright A. Lintermann, AIA 

Fig 4: Octree structure [2] 
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Vid 1: Massively parallel grid generator, Copyright A. Lintermann, AIA 
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Lattice-Boltzmann method: 
 

• Solves the discrete BGK formulation  
of the Boltzmann equation  

• fi (r,t) is the Particle Probability  
Distribution Function (PPDF) [6] 
 
 
 

•  
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Fig 5: D3Q27 Model 
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Level-Set Method: 
 

• The surface geometry of an arbitrary  
body is represented by a discrete 
signed Level-Set function 

• The minimum wall distance is  
calculated for each cell 

• Movement functions are used to  
simulate bodies in motion [7] 

– Translational, rotatory, and oscillating  
motion is possible 

– Temporal interpolation between an initial 
and a final Level-Set 

Fig 6: Level-Set representation 

          of an arbitrary body 
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Coupled Lattice-Boltzmann-Level-Set Approach: 
 

 

Fig 9: 𝐶𝐷 coefficient for a sphere at Re=100 

Fig 10: Static sphere at Re=100 

Fig 11: Moving sphere at Re=100 
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Geometry modification: 
 

● The software 3D Slicer is employed 
to modify the segmented data-set 
of a given nasal cavity 

● The area between the septum  
and the lower turbinate was  
modified to demonstrate the  
virtual surgery 

– Simulation of a swelling 

– One of the most relevant area from  
a fluid mechanical point of view 

– Great impact on the respiratory 
resistance 

  
Fig 10: Nasal cavity used for virtual surgery 



Simulation Setup 

12 

Geometry modification: 
 

 

Fig 11: Screenshot of 3D Slicer 
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Geometry modification: 
 

 

c). 
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Geometry modification: 
 

 

b). c). 
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Geometry modification: 
 

 

a). b). c). 
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General settings: 

 

● Three simulations are conducted in total 

– A simulations of the pre- and the postoperative geometry are performed (LBM) 

– A simulation of the virtual surgery is performed (LBM-LS) 

● The highly resolved meshes contain about 100 ∙  106 cells 

– The resulting grid spacing is about 𝛿𝑥 ≈ 0.1𝑚𝑚 (sufficient as shown in [10]) 

● Each simulation is advanced for 300,000 time steps 

– The results of the simulations are furthermore averaged for 300,000 time steps 

● The calculations were performed on the JURECA Supercomputer 
in Jülich and on the CLAIX Supercomputer of RWTH Aachen 

– In total 2048 processes were employed per simulation (about 10h-15h) 
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Boundary Conditions: 
 

● Nostrils:        - Equation of St. Venant and Wantzel [1] 

        - Ambient Temperature ( 𝑇𝑖𝑛 = 20 °𝐶 ) 

         ρ =  1 −
γ−1

2γ

3

ρ𝑡−1
2  ρ𝑡−1𝑣𝑡−1 

2 

γ

γ−1
   

 

● Pharynx:        - Volume flux is prescribed by setting the  

           corresponding Reynolds number ( 𝑉 = 250 
𝑚𝑙

𝑠
 ) 

        - Iterative procedure for pressure calculation [10] 

  

● Inner walls:       - Interpolated Bounce-Back-Scheme [6] 

        - Temperature is set to body temperature [10]  

           (𝑇𝐵𝑜𝑑𝑦 = 36 °𝐶 ) 
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Comparison of pre- and postoperative simulation results: 
 

● For all simulations similar setups have been used 

– The Reynolds number 𝑅𝑒 = 808  is based on the pharynx geometry, the  
volume flux in the pharynx, and the kinematic viscosity of air 

● The fluid mechanical properties analyzed are:  

– The static pressure loss between nostrils and pharynx ∆𝑝𝑠 = 𝑝𝑠,𝑛 − 𝑝𝑠,𝑝 

– The total pressure loss between nostrils and pharynx ∆𝑝𝑡 = 𝑝𝑡,𝑛 − 𝑝𝑡,𝑝  

– The temperature difference between nostrils and pharynx ∆𝑇 =  𝑇𝑝 − 𝑇𝑛 

– The velocity and temperature distributions  
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Comparison of pre- and postoperative simulation results: 
 

  

Tab 1: Comparison of the pre- and postoperative nasal cavity  

Preoperative 

nasal cavity 

Postoperative 

nasal cavity 

 

Comparison 

Static 

pressure loss 

Right cavity 32.62 Pa 22.76 Pa -43.32% 

Left cavity 28.55 Pa 27.95 Pa -2.15% 

Total 

pressure loss 
Both cavities 30.86 Pa 25.84 Pa -19.43% 

Temperature 

difference 
Both cavities 15.5°C 14.9°C -4.02% 

Absolute 

temperature 
Pharynx 35.5°C 34.9°C - 
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Results 

Velocity distribution: 
 

Fig 12: Velocity distribution in the slices of the pre- and postoperative simulation 19 

a). 

d). e). f). 

b). c). 



Results 

Temperature distribution: 
 

Fig 13: Temperature distribution in the slices of the pre- and postoperative simulation 20 

a). b). c). 

d). e). f). 



Results 

Virtual surgery, temporal changes of the LS-field: 
 

Fig 14: LS-field at four different time steps 𝑡1 - 𝑡4 21 

𝑡1). 𝑡2). 

𝑡3). 𝑡4). 



Results 

Pressure and temperature evolution during virtual surgery: 
 

Fig 15: Comparison of the total pressure for the  

            simulations of the pre- and postoperative  

            nasal cavity, and the virtual surgery  

22 

Fig 16: Comparison of the temperature for the  

            simulations of the pre- and postoperative  

            nasal cavity, and the virtual surgery  
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Conclusions: 
 

● A Lattice-Boltzmann solver is employed to simulate the 
respiratory flow in realistic geometries of the nasal cavity 

● Parts of the nasal cavity to be removed by a surgery can be 
represented by a Level-Set function 

● The Coupled Lattice-Boltzmann-Level-Set Approach can be 
used to:  

– Conduct virtual surgeries 

– Simulate swelling/detumescence in the nasal cavity 
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Further development: 

● Optimization of the in-situ environment 

– In-situ visualization, Geometry modification 

– Performance optimization 

● Implementation of a structure solver (Finite Cell Method) 
 

Future applications: 

• Fluid-structure-interaction inside the nasal cavity 

• Simulation of moving surfaces  

 Nose collapse 

 Obstructive sleep apnea 

• Simulation of particles inside the nasal cavity 
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