3D-printed models of the nasal cavity as extended preoperative anatomical and functional information

SEBASTIAN RÖSCH¹, PATRICIA NEUMAIER ¹, KLAUS VOGT², MARIO RÜTTGERS³

¹ENT-DEPT., PARACELSUS MEDICAL UNIVERSITY, SALZBURG/AUSTRIA

²UNIVERSITY OF LATVIA, FACULTY OF MEDICINE, CENTER OF EXPERIMENTAL SURGERY, RIGA/LATVIA

³ RHEINISCH-WESTFÄLISCHE –TECHNISCHE UNIVERSITÄT, INSTITUTE OF AERODYNAMICS, AACHEN/GERMANY

ERS & ISIAN Thessalonike, September 2021

The autors declare: no conflicts of interest

The aim: improving results of rhinosurgery

Missing success in functional rhinosurgery can result from

- Insufficient functional and anatomical preoperative diagnostic information
- Schematic application of surgical methods
- Missing experience or training of the surgeon

The step program of functional diagnostic

2 ways to simulate the functional effect of intended surgical steps

CT, DVT,MRI

Computational Fluid
Dynamics

Data transformation and generation of a stereolithograpy file (.stl)

Virtual simulation of surgery and determining the pressure and temperature gradients in different locations

3D-print of horizontal layers, measuring the obstruction by 4-phase-rhinomanometry, mechanical simulation of surgery and stepwise re-testing of the obstruction

CT or DVT

- Sufficient information about variations in anterior –posterior direction and about paranasal sinuses
- Limited information for planning of surgical steps in complicated anatomy in vertical direction

CFD analysis: area-averaged pressure

Workflow of 3-D-Printing

1. Import of stl-data

2. Selection of region of interest

3. Slicing by 4 horizontal cuts

3D-Printing: experiences

- Printing by 2 channels with support material recommended
- Test material for later grinding, cutting: thermoplastic materials!
- Use compact material (Tough PLA, CPE + or similar) better then elastic

Example: multiple stenoses of the nasal channel

Preparing rhinomanometric control of simulated "surgical" steps

Encasing in a normative housing

Measuring log. Resistances by 4PR2

First and expected results

- Additional information obtained from CT/MRI
- 2. Planning of surgical steps in difficult cases, if there is no agreement with the optical impression and the dgree of impairment of nasal resistance
- 3. Individually adapted surgery instead of "textbook methods"
- 4. High didactic effect for beginners in surgery

Get a personal impression at the booth of RHINODIAGNOST!

Thank you!